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Abstract—This work considers kinematic failure tolerance when
obstacles are present in the environment. It addresses the issue of
finding a collision-free path such that a redundant robot can suc-
cessfully move from a start to a goal position and/or orientation in
the workspace despite any single locked-joint failure at any time.
An algorithm is presented that searches for a simply-connected,
obstacle-free surface with no internal local minimum or maximum
in the configuration space that guarantees the existence of a solu-
tion. The method discussed is based on the following assumptions:
a robot is redundant relative to its task, only a single locked-joint
failure occurs at any given time, the robot is capable of detecting
a joint failure and immediately locks the failed joint, and the en-
vironment is static and known. The technique is illustrated on a
seven degree-of-freedom commercially available redundant robot.
Although developed and illustrated for a single degree of redun-
dancy, it is possible to extend the algorithm to higher degrees of
redundancy.

Index Terms—Kinematic failure tolerance, locked-joint failures,
path planning, redundant manipulators, self-motion manifolds.

I. INTRODUCTION

F AILURE-TOLERANT path planning is a motion plan-
ning strategy that gives a robot the ability to gracefully ac-

commodate joint failures. This ability enhances safety and re-
liability for robots carrying out tasks in remote or hazardous
environments, such as in space exploration [1], [2], underwater
exploration [3], and nuclear waste disposal [4]–[6]. It allows a
robot to immediately complete the task at hand without unnec-
essary delays due to robot repair. It also avoids the potentially
significant danger associated with a robot failure during task ex-
ecution amongst hazardous materials.

A number of studies have been dedicated to the assessment
[6], [7] and analysis [5], [8]–[12] of robot safety and reliability,
including robots designed primarily for this purpose [13]–[15].
The earliest work on kinematic failure tolerance [16] used the
minimum singular value of the manipulator Jacobian matrix
as a local worst-case measure of a robot’s tolerance to a joint
failure. The nature of joint failures that have been studied
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include locked-joint [17]–[19] and free-swinging joint failures
[20]. A real-time implementation of local kinematic failure
tolerance has been demonstrated in [19]. Other studies related
to enhancing a robot’s tolerance to failure include work on
failure detection [21]–[23], low-level failure avoidance and
recoverability [24], [25], layered failure tolerance control
[26]–[28], failure tolerance by trajectory planning [29], and
kinematic failure recovery [30]. In all of these previous studies
on kinematic failure tolerance cited above, workspace obstacles
were not considered.

Despite the lack of attention that it has received, the pres-
ence of obstacles in the environment greatly affects a kinematic
failure tolerance algorithm. To our knowledge, the only work to
consider obstacles along with failure tolerance was [31]. Their
approach allows one to guarantee that a manipulator can avoid
obstacles while the end-effector follows a desired workspace
path, even in the presence of an arbitrary single locked-joint
failure that occurs at any point along the trajectory. Our work
is similar in that it allows a manipulator to avoid obstacles in
the presence of joint failures, however, it differs in that the task
definition is specified as a desired start and goal location in the
workspace, as is typical of pick-and-place tasks. This is signifi-
cant because constraining the end-effector to a specific path will
greatly reduce the likelihood that an obstacle-free, failure-tol-
erant trajectory exists.

The remainder of this paper is organized as follows. An
overview of the proposed approach is presented in Section II.
Section III states the conditions that guarantee the existence
of a solution to the failure-tolerant path-planning problem and
then uses these conditions to form the basis of an algorithm.
Section IV illustrates the efficacy of the algorithm on a three
degree-of-freedom planar robot. A seven degree-of-freedom
example is presented in Section V using the Mitsubishi PA-10
robot. Finally, the summary and conclusions of this work are
given in Section VI.

II. OVERVIEW OF THE PROPOSED APPROACH

Consider a kinematically redundant manipulator, operating
in a failure-prone environment, that must complete a pick-and-
place type task in a workspace filled with obstacles. The goal
of our work is to generate a family of joint trajectories, each of
which would allow the manipulator to avoid obstacles and tol-
erate any single locked-joint failure as its end effector travels
from the given start workspace location to the desired goal lo-
cation. To achieve this goal, two fundamental issues need to be
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resolved. First, the manipulator must be restricted to a region of
the configuration space (C-space) that is obstacle free. Second,
while in this region, one must guarantee that the goal workspace
location is reachable even after any joint failure. Our approach
is to precompute a surface in the C-space that is obstacle free
and guarantees that the goal remains reachable. The character-
ization of the properties of such a surface is a key contribution
of this work.

The requirement of failure tolerance dictates the boundaries
of where the surface must be contained so that the goal remains
reachable. This is equivalent to determining the range of the
joint values for being at the goal workspace location. Thus, the
first step is to make sure that the starting joint configuration
falls within this range. This is the same type of test used in [31]
and has also been applied to determine a manipulator’s failure-
tolerant workspace [18].

Staying within these boundaries is not sufficient for guaran-
teeing that the workspace goal is reachable. However, it is pos-
sible to guarantee reachability if the surface has certain proper-
ties, namely that it contains no internal local minimum or max-
imum in terms of the individual joint variables. If a surface with
these properties is also obstacle free, then operating on this sur-
face guarantees failure tolerance. Thus, the crux of our approach
is to identify such a surface.

The remainder of this section will define the terms that
are used in this work. Let denote the number of degrees of
freedom (DOFs) of a robot and let denote the number of
DOFs of a robot’s workspace. For a kinematically redundant
robot , the degree of redundancy is .
Its given end-effector position and/or orientation, denoted ,
generally corresponds to an infinite number of configurations
in the C-space. The set of configurations in C-space that result
in the same end-effector workspace location is called the
pre-image of . The pre-image can be written as a union of
disjoint connected sets

(1)

where is the th -dimensional self-motion manifold in the
inverse kinematic pre-image such that when
, and is the number of self-motion manifolds provided that

the pre-image contains no singular configurations [32]. When
the pre-image of contains both singular and non-singular con-
figurations it results in manifolds that meet at a singular config-
uration [33].

A start self-motion manifold, denoted , corresponds to
a start position and/or orientation, denoted , while a goal
self-motion manifold, denoted , corresponds to a goal posi-
tion and/or orientation, denoted . Fig. 1 shows a pair of single
dimensional start and goal self-motion manifolds for a robot
with . The dark portions of the self-motion manifolds de-
note configurations of the robot that are outside the joint limits
or are in contact with obstacles. A continuous, obstacle-free por-
tion of the goal self-motion manifold is denoted , while an
obstacle-free start configuration is denoted . A point on is
denoted .

When a robot suffers from a locked-joint failure, its feasible
motion in the C-space is reduced. In particular, a single locked-

Fig. 1. Configuration space for a single degree-of-redundancy robot shown
with a start and a goal self-motion manifold. All the failure planes corresponding
to an obstacle-free start configuration, ��� , intersect a continuous, obstacle-free
portion of the goal self-motion manifold, 


 . The failure cuboid contains ���
and 


 (v). The failure surface corresponding to ��� , shown as a web-like net-
work of paths, is identified by connecting ��� to points on 


 (v) via monotonic
paths within the failure cuboid. Each node along 


 (v) defines an intersection
with a face of the failure cuboid. (Color version available online at: http://iee-
explore.ieee.org.)

joint failure restricts the reachable robot configurations in the
C-space to an -dimensional hyperplane. For example, if
a failure occurs in the th joint at the configuration , its th
component remains fixed so that the resulting reduced C-space
becomes

(2)

where denotes the th component of and denotes the th
component of . We will call the failure hyperplane as-
sociated with . Fig. 1 shows with its corresponding failure
planes , , and .

Given a desired workspace goal , a necessary condition
will be developed to determine if that goal can be reached from

in spite of any locked-joint failure. This condition will iden-
tify a portion of the curve, parameterized here by the function

. The extremal points of define the
bounds of a hypervolume, , in C-space called a failure hyper-
cuboid. This failure hypercuboid has the form

(3)
This determines a failure-tolerant workspace corresponding to

and . In this case is called a feasible start configu-
ration. The failure-tolerant workspace discussed in this work is
a subset of the one discussed in [18], which is a function of
and .

Because there are obstacles in the workspace, there is a
need to identify a suitable region in the failure hypercuboid
that would allow the robot to reach the goal while avoiding
obstacles. Furthermore, this region must have the property that
the robot can still reach its goal in spite of a single locked-joint
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failure. This will be accomplished by choosing a surface con-
necting a suitable to a . This surface is chosen so that
the manipulator will not encounter obstacles and can remain
on the surface even if a joint is locked. The conditions for the
existence of such a surface, called a failure surface, , will be
derived in the following section.

III. GUARANTEEING A FAILURE-TOLERANT PATH

A. A Necessary Condition and a Sufficient Condition

In the previous section, we described an approach to guar-
antee failure tolerance in the presence of obstacles using a sur-
face. In this section we will derive conditions concerning the
existence of such a surface. The first condition is a necessary
condition to determine the suitability of a start configuration,

, based on the ability of the manipulator to reach the curve
with any single joint locked. While and are obstacle free,
this condition does not take into account the possibility of en-
countering obstacles on the way, and is thus only a necessary
condition. We will see later that this tends to be a strong indi-
cator of the likelihood that such a surface exists. Fortunately it
turns out that this is a relatively fast calculation that can easily
eliminate cases where no surface exists. The second condition
is used to determine the existence of the solution once a feasible

is identified. The proof of this result will motivate an algo-
rithm for calculating a suitable surface. Such a surface cannot
have a local minimum or maximum in any of its components.

The necessary condition is given in terms of the failure hy-
perplanes associated with . Given and , the manipu-
lator can reach when joint is locked at provided that
the corresponding failure hyperplane of intersects , that
is, . Physically this means that the resulting
failure-induced C-space due to a locked joint failure at
contains at least a point of . This indicates the possibility of
reaching despite a locked-joint failure at . Thus, to guar-
antee that the robot will reach from for any locked-joint
failure, it is necessary that each of the failure hyperplanes,

, intersects the curve. This motivates the definition of
a feasible start configuration when all of its corresponding
failure hyperplanes intersect . This proposition is formally
stated as a necessary condition.

Proposition 1 (Necessary Condition): A necessary condition
for a given obstacle-free start configuration, , to be a feasible
start configuration is that all of the corresponding failure hyper-
planes of intersect a continuous, obstacle-free portion of the
goal self-motion manifold, , that is

for all (4)

After a feasible has been identified, its corresponding
defines the bounds of a failure hypercuboid, . If there

were no obstacles in the workspace, then the identification of
is sufficient to guarantee that a given robot can successfully

reach from for any single locked-joint failure at any
time by keeping its configurations within as the given robot
approaches . When obstacles are present in the workspace,
some regions of may no longer be available. The problem

now becomes that of searching for a solution set within
that can guarantee successful completion. This will be accom-
plished by generating an obstacle-free surface connecting to
the curve in such a way that the manipulator can continue to
move along the surface to in spite of any single locked-joint
failure. When a joint is locked the manipulator is constrained to
be on a corresponding hyperplane. Therefore, the intersection of
that hyperplane with the surface needs to connect with . The
surface must satisfy a monotonicity property in the following
sense. Consider locking joint . As the value at which joint
is locked varies, this determines a contour-like plot in which

is analogous to the height. The different contours represent
the manipulator’s motion along the surface with its th joint
locked at different fixed values. In order for a manipulator to
be able to reach its goal for any locked-joint failure, no closed
contours can exist. Therefore, the surface cannot have any local
internal minimum or maximum with respect to any . This
monotonicity condition is captured by the following theorem.

Theorem 1 (Sufficient Condition): Let be an obstacle-free,
two-dimensional, simply-connected surface in . Suppose

is the image of a continuous func-
tion that is continuously differentiable
in its interior and that has the following properties:

i) for all ;
ii) for all where is a smooth

connected curve;
iii) For a fixed and a fixed integer ,

the th component of is either a strictly
monotonic function of such that for

or, in the case when , a constant with
respect to .

Furthermore, assume that any point on satisfies

for

Then given any point on and any integer ,
there is a curve lying entirely on that connects

to a point on the curve such that for all
.

Proof: The result will be proven by constructing a suit-
able curve. Fix . Given , there is a
pair such that . By assumption (iv),

for some where we assume is the
closest such value to . We need to show that there is a curve

such that , , and
for all .

The problem is trivial if is on the curve. Assuming that it
is not, we consider three cases. First, suppose that . Then

and by assumption (iii) the curve
is a suitable curve. Next, consider the case when but

. Then but so that
is not strictly monotonic in . But, by assumption (iii),

this implies that for . This gives a
suitable curve .

Lastly, consider the case when . The goal is to
determine a trajectory , ,
going from to while keeping

constant. Since the domain is compact, this
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can be done by applying an inverse velocity kinematics type al-
gorithm to the system

(5)

to find a suitable trajectory provided, of course, that
the Jacobian of

(6)

does not become singular along the way. However, by assump-
tion (iii), the determinant of , which is equal to ,
is zero only when . This never occurs along the
trajectory as is fixed. We can therefore gen-
erate a trajectory such that

(7)

To finish off the proof, we need to show that stays on the
interval [0,1] throughout the trajectory and ends at 1. We do this
by first showing that cannot be 1 or 0 for
and then using an argument concerning the monotonicity of

with respect to to show that must be 1. The case
for some violates the assumption that
while the case for some vi-

olates the assumption that is the closest -value to such
that . Since on the trajectory, we
have that so that
by assumption (iii), . We thus have a suitable curve

.
Thus, the monotonicity of paths from to guarantees

that after a single locked-joint failure, the given robot will not
get stuck in the vicinity of an internal local minimum or max-
imum and will reach a point on . By specifying only the
start and goal locations for pick and place tasks in the presence
of obstacles, the solution being presented provides some flexi-
bility in choosing the obstacle-free, failure-tolerant path towards
the goal based on some desired optimization criteria prior to
a failure. After a failure, there would exist a finite number of
feasible paths. When there is more than one feasible path the
shortest path towards the goal, for example, could be chosen.

Theorem 1 motivates the method for identifying a failure sur-
face in the algorithm by generating monotonic paths from to

. Note that this theorem is only a sufficient condition and
can only guarantee task completion when the failure surface ex-
ists. When the failure surface identification is unsuccessful, a
solution may still be present.

B. An Algorithm

The procedure for implementing failure-tolerant path plan-
ning with obstacle avoidance is enumerated in the following.

1) Determine the start self-motion manifold, , and goal
self-motion manifold, , from the given start, ,
and goal, , workspace position and/or orientation,
respectively.

2) Identify an obstacle-free start configuration, , and an ob-
stacle-free portion of the goal self-motion manifold, .
Those portions of the self-motion manifold that are outside

the joint limits are treated in the same manner as configura-
tions corresponding to collisions with obstacles. Thus, by
obstacle-free configurations we mean those configurations
that are not in collision with obstacles and are within the
joint limits.

3) Check for intersections of the failure hyperplane
with for . (Note that this step uses the
necessary condition in Section III-A.) This check, although
in a different form, was also performed in [18] and [31].

4) Check for the existence of a failure surface, . This is per-
formed by generating monotonic paths from the feasible
to points on and checking for intersections with ob-
stacles.1 (This step utilizes the sufficient condition in Sec-
tion III-A.)

The computational complexity of the proposed algorithm is
highly dependent on the method used for computing the start
and goal self-motion manifolds, and the method used for col-
lision detection. For , the computational complexity is

where is the number of obstacles in the
workspace. The first term corresponds to the computation of the
self-motion manifolds, while the second term is due to collision
detection.

For higher degrees of redundancy, a curve would need
to be identified in the corresponding higher dimensional goal
self-motion manifold. This is done by first identifying the ob-
stacle-free intersections of the manifold with all of the failure
hyperplanes for . If the goal self-motion
manifold does not intersect each , then no can exist. The
next step is to connect one point from each failure hyperplane in-
tersection. Two failure hyperplane points are connected by gen-
erating a path along the self-motion manifold, e.g., by using the
null vectors from the Jacobian, along with a term to avoid ob-
stacles. If all intersection points can be connected with such ob-
stacle-free paths that lie in the goal self-motion manifold, then
the resulting connected curves represent a suitable .

C. Generating Monotonic Surfaces

1) Monotonic Curves: Parametric monotonic quadratic poly-
nomials are used to generate a family of paths from to

. These paths are chosen to form an obstacle-free, continu-
ously differentiable surface satisfying the conditions of The-
orem 1.

It is easy to see that any quadratic polynomial satisfying
the constraints and has the form

(8)

where the parameter can be any real number and denotes
the th component of . Although does not affect the values
at the end-points, it does completely characterize whether the
polynomial is monotonic or not. To see this, note that a poly-
nomial is monotonic on the closed interval [0,1] if and only if
its derivative does not change sign on the open interval (0,1).
Since the derivative of a quadratic polynomial represents the
equation of a line, it follows that one only needs to check the
endpoints of the interval [0,1] to determine the set of ’s that

1Note that the obstacles must be grown in order to guarantee that no collision
can exist between curves.
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makes (8) monotonic on [0,1]. Therefore, for (8) to be mono-
tonic on [0,1], and
should not have opposite signs. This is clearly true if and only
if .

2) Monotonic Surfaces: Equation (8) can be used to deter-
mine a failure surface described by

(9)

Suitable values for are determined for discrete values of
along the curve. These values are then connected

so that has first-order continuity. The region between the
monotonic paths determined by can be guaranteed to be
collision free if the obstacles are suitably enlarged prior to com-
puting the monotonic quadratic curves. One must also check that
the monotonicity condition continues to hold
in between the discrete values . With this choice of

, the conditions of Theorem 1 are satisfied so that is a
suitable failure surface.

3) Trajectory Generation: Once a monotonic surface is pre-
computed, trajectory generation for the robot is very computa-
tionally efficient. Specifically, the robot starts from configura-
tion and its trajectory is generated by following a desired path
on the surface given by a fixed value of the parameter by eval-
uating the quadratic for successively increasing
values of . If a failure occurs in joint at while the
robot is moving, then, in general, it will no longer be possible
to follow the same curve because must remain constant. The
trajectory to reach the desired goal workspace location is now
computed by solving the quadratic
for the value of that will keep the trajectory on the surface. The
value of is incremented until at which point the
robot will be at the desired workspace location.

IV. 3-DOF PLANAR ROBOT EXAMPLE

A 3-DOF planar robot with equal link lengths of 100 units
was first used to explore the feasibility of the proposed ap-
proach. The workspace contained a number of circular obsta-
cles, each of a diameter of 40 units, where the number of obsta-
cles was varied from zero to twenty in two-obstacle increments.
For each number of obstacles, experiments were performed for
1000 randomly generated scenarios, where a scenario consists
of a given start workspace location, a given goal workspace lo-
cation, and the specified locations of the obstacles. In each sce-
nario, the locations for the corresponding number of obstacles
are randomly selected from a uniform distribution throughout
the entire robot workspace. The start workspace location, ,
is randomly selected from a uniform distribution of [100,200]
along the -axis, that is, at a distance that corresponds to be-
tween one and two-link lengths away from the robot base. The
goal workspace location, , is randomly selected to be within
a range of [0,200] units from the range of start workspace lo-
cations (while restricting the goal to be within the reachable
workspace of the manipulator). Fig. 2 presents an example of the
start and goal locations generated for one thousand scenarios.

Five examples from the set of 11 000 scenarios are presented
in Fig. 3 where the number of obstacles is varied from 20 to 12

Fig. 2. Workspace of a 3-DOF planar manipulator used for the simulation ex-
periments (all three link lengths are 100 units long). The 1000 start locations,
x , are randomly generated within the range [100,200] units along the x-axis
(shown as a thick bold line). The 1000 goal workspace locations, x , (shown
as dots) are randomly generated to be within the range [0,200] units away from
the range of start locations (but inside the reachable workspace). The center of
the workspace is marked with a bold cross, the workspace boundary with a solid
line, and the boundary of the goal locations with a dashed line.

in two-obstacle decrements. In all cases shown, the failure-tol-
erant, path-planning algorithm was able to identify a failure sur-
face, . The manipulator configuration shown in each scenario
is the feasible starting configuration, , that was determined by
the algorithm. To illustrate the difficulty of these problem sce-
narios, the shaded regions identify locations in the workspace
where even a single obstacle will prevent the existence of a set
of collision-free monotonic curves.

Table I shows the values of the start configuration
corresponding to the scenarios in Fig. 3. The

failure plane intersects the continuous, obstacle-free
goal self-motion manifold at
where . Fig. 4 shows projections of the self-mo-
tion manifolds in C-space for the scenarios of Fig. 3(a)–(c)
where a failure surface exists. The cross on a self-motion
manifold denotes the feasible start configuration, , for the
corresponding scenario. The that satisfied the necessary
condition is the curve on the self-motion manifold between
the points labeled “0” and “1”. The web-like network of paths
represents the failure surface for each of the corresponding
scenarios. In the following subsections, data gathered from
these 11 000 simulation experiments will be presented ac-
cording to the order in which these steps are performed in
the algorithm described in Section III-B. To illustrate the
effects of joint limits, an additional 11 000 scenarios were
performed with , , and

. In all cases the algorithm was executed
on a computer with dual Intel Xeon processors running at
2.4 GHz.

A. Computation of Self-Motion Manifolds

The first step in the failure-tolerant, path-planning algorithm
is to compute the self-motion manifold(s) for both the start and
goal workspace locations. These are computed by identifying a
single configuration on each disjoint manifold and then stepping
along the manifold (in two degree increments) by integrating
the null vector of the manipulator Jacobian matrix (which cor-
responds to the tangent of the self-motion manifold). The av-
erage lengths for the sum of all manifolds corresponding to a
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TABLE I
SET OF FEASIBLE, OBSTACLE-FREE START CONFIGURATIONS, ��� ’s, SHOWN IN FIG. 3 WITH THE CORRESPONDING FAILURE PLANES H (��� ) INTERSECTING

A CONTINUOUS, OBSTACLE-FREE PORTION OF THE GOAL SELF-MOTION MANIFOLD, 


 (v), SHOWN IN UNITS OF DEGREES

Fig. 3. Five examples selected from the 11 000 scenarios where the failure-tolerant, path-planning algorithm was applied to a 3-DOF planar manipulator. The
scenarios correspond to workspaces containing from 20 to 12 obstacles where both the necessary and the sufficient conditions were satisfied. The shaded region
in each scenario represents an area where a single obstacle will eliminate any possible monotonic curve connecting a ��� to its corresponding ��� . (Color version
available online at: http://ieeexplore.ieee.org.)

Fig. 4. Projections of the self-motion manifolds on the � � -plane for the sce-
narios of Fig. 3(a)–(c). The failure surface, SSS , is shown as a web-like network
of paths. The feasible ��� is shown as a cross on the self-motion manifold while
the 


 (v) is the curve on the self-motion manifold between the points labeled
“0” and “1”. For the example shown in Fig. 3(c), the goal manifold consists of
two disjoint manifolds in the C-space because x is less than one link length
away from the robot base.

TABLE II
COMPUTATION OF SELF-MOTION MANIFOLDS

workspace location are given in Table II. The length for the start
manifolds are larger than those for the goal manifold because
the start workspace locations were intentionally restricted to a
region of the workspace where these manifolds are larger, and
thus, the locations are more failure tolerant [18]. (A distance of
one link length from the base is optimally failure tolerant, i.e.,

Fig. 5. Percent of the self-motion manifolds that are reachable and obstacle free
for a 3-DOF manipulator with and without joint limits. (Color version available
online at: http://ieeexplore.ieee.org.)

all joints span their entire range of motion, while the locations
on the workspace boundary are most failure intolerant, i.e., their
self-motion manifolds consist of a single point.) The average
computation time over all manifolds was 41.9 ms.

B. Identifying Obstacle-Free Portions of and

The next step is to determine the obstacle-free portions of
the manifolds. This identifies candidate feasible, obstacle-free
start configurations, , and continuous, obstacle-free portions
of the goal self-motion manifold, , that can possibly satisfy
the necessary condition.

Fig. 5 shows the percentage of the start self-motion mani-
fold, , and goal self-motion manifold, , that are reach-
able and obstacle free as a function of the number of obstacles in
the workspace. As expected, the percentage of the obstacle-free
self-motion manifold decreases as the number of workspace ob-
stacles increases. The time required to determine which portions



JAMISOLA et al.: FAILURE-TOLERANT PATH PLANNING FOR KINEMATICALLY REDUNDANT MANIPULATORS 609

TABLE III
COMPUTATION TO CHECK THE NECESSARY CONDITION (N.C.)

of a manifold are obstacle free is proportional to the number of
obstacles by a proportionality constant of 16.5 ms/obstacle.

In many cases, one could avoid most of the computation time
associated with checking the entire manifold for collisions with
obstacles by performing the necessary condition check first, and
then verifying that the start configuration and the corresponding
portion of the goal self-motion manifold are collision free.

C. Checking the Necessary Condition

Table III presents the computational data associated with
checking the necessary condition. As the number of obstacles in
the workspace increases, the percentage of cases that satisfy the
necessary condition decreases, reaching a minimum of 24% for
the case with twenty obstacles (10% if joint limits are included).
For those cases where a satisfied the necessary condition,
we further processed the start manifold to see what percentage
of the start manifold would be able to satisfy the necessary
condition. (This is not required by the algorithm and the time
required to perform this computation was not included in the
overall execution time data presented.) Table III shows that
this is also a monotonically decreasing function of the number
of obstacles in the workspace. Thus, it becomes increasingly
more time consuming to identify a that satisfies the nec-
essary condition as the number of obstacles in the workspace
increases. This is illustrated by the fact that the computation
time is a monotonically increasing function of the number of
obstacles. This is true despite the fact that there is less and
less of the start manifold that is obstacle free (see Fig. 5)
because an increasingly smaller percentage of the obstacle-free
manifold is able to satisfy the necessary condition. In contrast,
the time to compute that the necessary condition is not satisfied
is relatively independent of the number of obstacles. This at
first appears anomalous because one would expect this to be a
monotonically decreasing function due to a smaller percentage
of the start manifold needing to be checked (because less of it
is obstacle free). However, this is offset by the fact that larger
and larger manifolds are now failing the necessary condition,
thus keeping the computation time relatively constant.

Fig. 6 shows the average length of the from a
pair that satisfies the necessary condition. This generally de-
creases as the number of obstacles increases due to the fact that it

Fig. 6. Average length of a 


 (v) that satisfies the necessary condition (N.C.)
and that also satisfies the sufficient condition (S.C.) as a function of the number
of obstacles in the workspace. The trends are the same for cases with and without
joint limits. (Color version available online at: http://ieeexplore.ieee.org.)

is more difficult to have a large because they are required
to be obstacle free. The size of a that satisfies the neces-
sary condition is correlated to the distance between the start and
goal workspace locations so that, as expected, start and goal lo-
cations must be closer together as more and more obstacles are
added to the workspace.

D. Computing a Failure Surface

The final step in the algorithm is to check the sufficient con-
dition by attempting to compute a failure surface that guaran-
tees the existence of a solution to the failure-tolerant, path-plan-
ning problem. Once a feasible is found from the previous step,
the search for a failure surface begins. A failure surface is iden-
tified by generating monotonic paths that connect a feasible
to points on its corresponding that satisfies the necessary
condition. (The curve is discretized at a resolution of two
degrees.) For each point on the algorithm first attempts to
use a straight-line path. If this path is not obstacle free, then it at-
tempts to find a monotonic quadratic path that is obstacle free up
to a desired resolution of in (8). If no such path can be found
then the algorithm discards this pair and uses the next

pair that satisfies the necessary condition. If all such
pairs are exhausted without completing a failure surface then the
algorithm terminates with a message that it was unsuccessful.

It is interesting to note that once the necessary condition is
satisfied, it is highly likely that a failure surface will be found,
i.e., this occurs 84% of the time. In addition, this percentage is
relatively independent of the number of obstacles that are in the
workspace as illustrated in Fig. 7 (except, of course, for the case
of no obstacles). This is fortuitous, because the construction of
failure surfaces is by far the most time consuming portion of
the algorithm. The average time for computing a failure surface
as a function of the number of obstacles is given in the second
column of Table IV. The overall average time was 1.5 s with the
maximum time to compute a failure surface over all scenarios
was 78.0 s. Similarly, it takes on average 1.8 s to exhaust all pos-
sible candidates in cases where a surface cannot be found, with
a maximum time of 66.7 s. Thus, the time to evaluate surfaces
is seldom wasted, with the majority of the cases where no so-
lution exists being identified in a matter of milliseconds by the
necessary condition test.
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Fig. 7. Percent of total cases where the necessary condition (N.C.) is satisfied
and percent of total cases where the sufficient condition (S.C.) is satisfied, i.e.,
where a failure surface SSS is found. The trends are the same for cases with and
without joint limits. (Color version available online at: http://ieeexplore.ieee.
org.)

TABLE IV
COMPUTATIONS WHEN SSS IS FOUND

Because monotonic path generation represents the most time
consuming portion of the algorithm, an additional analysis was
performed to determine the number and computational cost of
linear paths versus quadratic paths. The data from this analysis
is presented in Table IV where “L” denotes that only linear paths
were tried by the algorithm, “L+Q” denotes that both linear and
quadratic paths were tried, and “(L+Q) ” represents the subset
of “L+Q” scenarios that correspond to cases where the “L” algo-
rithm was also able to compute a failure surface. It is interesting
to note that nearly all (99.6%) of the paths in failure surfaces are
linear. Furthermore, the number of additional failure surfaces
that are identified when trying quadratic paths is minimal, i.e.,
always less than 1% (see the last column in Table IV). Given
that the use of quadratic paths results in higher execution times
(this is true for all cases except for four or fewer obstacles) and
a minimal improvement in the number of failure surfaces being
identified, the benefit of implementing higher order, monotonic
paths is questionable.

E. Comparison to Previous Approaches

It is interesting to compare the results of our approach with
that in [31]. Both approaches are similar in that the set of
monotonic curves generated by the algorithm presented here

plays the same role as the connectivity graph in [31]. However,
any workspace trajectory generated by a path through the con-
nectivity graph will result in the same end-effector trajectory
because this is required by the problem definition in [31]. While
this is appropriate for tasks that must have the end-effector
follow a prescribed trajectory, it limits the number of possible
choices for failure-tolerant trajectories if the robot is only re-
quired to perform a pick-and-place type operation. The method
proposed here will produce an infinite number of possible
obstacle-free, failure-tolerant paths from the start to the goal2

because it does not constrain the end-effector trajectory.
Fig. 8 illustrates the broad range of end-effector trajectories

that are failure tolerant if the task is only constrained to a desired
start and goal location rather than a complete trajectory. Each
of the subfigures (a)–(e) show the mapping of a set of failure-
tolerant, monotonic curves in the configuration space to the
workspace for the same start and goal location. Clearly, relaxing
the constraint on the end-effector trajectory makes it much
more likely that a collision-free, failure-tolerant path will exist.

V. SEVEN DOF REDUNDANT ROBOT EXAMPLE

The proposed failure tolerant path-planning algorithm was
also implemented for the Mitsubishi PA-10 seven degree-of-
freedom manipulator because it is the most common commer-
cially available redundant robot. Unfortunately, the PA-10 is
not a fully kinematically failure-tolerant robot because the null
space component of joint four is identically zero, i.e.,

(10)

throughout the entire C-space. Physically, this is due to the fact
that joint four is the only joint that can alter the distance between
the wrist and the shoulder, which is why the PA-10 is intolerant
to a failure in this joint.3 Therefore, for this example we will
assume that there will be no failure in joint four and consider
planning a failure-tolerant path for the remaining six joints. For
this example, we do not consider joint limits or self-collisions.

A total of 12 000 randomly generated scenarios were per-
formed on the PA-10 where spherical obstacles with a diameter
of 0.254 m (10 in) are randomly placed in the robot’s workspace.
The number of obstacles was varied from zero to ten such that
2000 experiments were performed for each number of obsta-
cles. The range of desired workspace locations is constrained in

and to [ 0.8,0.8] m and in to [0,0.8] m. It is further spec-
ified that the distance of the resulting position from the base of
the robot be in the range of [0.3,0.8] m. Thus, the volume where
the workspace positions are randomly picked consists of a hemi-
sphere with an inner radius of 0.3 m and outer radius of 0.8 m. It
is in this range of positions where the excursion of the self-mo-
tion manifolds for the PA-10 are relatively large. For simplicity,
the end-effector is considered to be at the wrist so that no restric-
tions on orientation are required. The results of the experiments
are shown in Fig. 9. These results are very similar to the 3-DOF

2The specific trajectory that the robot follows can then be selected based on
some secondary criterion.

3There are a number of different measures that can be used to quantify global
fault tolerance based on the maximum excursion of a joint as it spans the self-
motion manifold. See [34] for several such measures.
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Fig. 8. Subfigures (a)–(e) have the same start and goal workspace locations where x = [�8:8;�188] and x = [�42:5; 76:8] . The shaded regions represent
the end-effector locations corresponding to different sets of monotonic curves that will take the end-effector from x to x . (Color version available online at:
http://ieeexplore.ieee.org.)

Fig. 9. Percent of 12 000 random scenarios for the PA-10 where the necessary
condition (N.C.) is satisfied and where the sufficient condition (S.C.) is satisfied,
i.e., where a failure surface,SSS , is found. (Color version available online at: http://
ieeexplore.ieee.org.)

Fig. 10. A scenario within the specified range of workspace locations of
the 12 000 experiments for the PA-10 robot with ten random obstacles in the
workspace. Each of the obstacles has a diameter of 0.254 m (10 in). The corre-
sponding x and x are shown. The first three vector components correspond
to the desired position in units of meters. The last four vector components
correspond to the desired orientations expressed as quaternions. (Color version
available online at: http://ieeexplore.ieee.org.)

case, i.e., if the necessary condition is satisfied it is highly likely
that the sufficient condition will also be satisfied.

A specific example from one of the 12 000 random experi-
ments is shown in Fig. 10. The start configuration determined
by the algorithm is

in degrees. Its corresponding failure hyperplane inter-
sects in the following order: .4 Fig. 11

4The failure hyperplaneH (��� ) does not intersect 


 because of the intoler-
ance to a joint four failure.

Fig. 11. Failure surface corresponding to the example in Fig. 10 shown as a
web of paths in the configuration space, with projections from joint axes 1 and
3, 5 and 7, and 2 and 6. The projections are shown in the same scale with units of
radians. The bold curves represent portions ofMMM , while the less thick curves
represent portions ofMMM . The axes shown are translated from the origin to the
feasible ��� . Its corresponding 


 (v) is the curve between the points labeled “0”
and “1”.

shows the corresponding failure surface for the example in
Fig. 10.

VI. SUMMARY AND CONCLUSION

This work considered the problem of guaranteeing failure tol-
erance when obstacles are present in the environment and the de-
sired task is of the pick-and-place type. Conditions were formu-
lated that guarantee the existence of a solution to this problem.
An algorithm was presented that searches for a simply-con-
nected, obstacle-free surface with no internal local minimum
or maximum in the configuration space, called a failure sur-
face, whose existence guarantees a solution. Numerous exam-
ples were presented using both a 3-DOF planar robot and a
7-DOF spatial robot to illustrate the efficacy of the algorithm.
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